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PREFACE 

This report summarizes the development of structural models for 

composite rotor blades. The models are intended for use in design 

analysis for the purpose of exploring the potential of elastic tailoring. 

The research has been performed at the Center for Rotary Wing Aircraft 

Technology, Georgia Institute of Technology. Professor Lawrence W. 

Rehfield was the Principal Investigator. 

Close collaboration with Mark Nixon, Renee Lake, Gary Farley and 

Wayne Mantay o f  the Army Aerostructures Directorate, Langley Research 

Center, was maintained throughout the investigation. 



INTRODUCTION 

Composite material systems are now the primary materials for 

he1 icopter rotor system applications. In addition to reduced weight and 

increased fatigue life, these materials provide designs with fewer parts 

which means increased service life and improved maintainability. Also, in 

terms of manufacturing, it is possible to achieve more general aerodynamic 

shapes including flapwise variation in planform, section and thickness. 

The aeroelastic environment in which rotor blades operate consists of 

i nerti a1 , aerodynamic and el asti c loadings. Because of the di recti onal 

nature of the composite materials, it is possible to construct rotor 

blades with different ply orientations and hybrid combinations of 

materials exhibiting coupl ing between various elastic modes of 

deformation. For example, if the fibers are placed asymmetrically in the 

upper and lower portions o f  the blade, there will be a twist induced by 

flapwise bending. This provides a potential for improving the performance 

of a listing surface through aeroelastic tailoring of the primary 

load-bearing structure. Aeroelastic tailoring of a composite structure 

involves a design process in which the materials and dimensions are , 

selected to yi el d speci f i c coupl i ng characteri sti cs whi ch in turn enhance 

the overall performance of the structure. The design of such advanced 

structures requires simp1 e and re1 iabl e analyti cal tools which can take 

into consideration the directional nature of these materials. In this 

report, a description of analytical models is presented which aid in the 

design of composite rotor blades. 



SUMMARY OF ACCOMPLISHMENTS 

Foundation Provided by Previous Work 

The present research had its origin in the development and 

application of a new structural model for composite rotor blades with a 

single structural cell. The theory is presented in Accomplishment 1, an 

extensive numerical comparative study appears in Accomplishment 2 and a 

comparison with box beam experiments is given in Accomplishment 3. This 

body of knowledge established a sound technology base for applications and 

design-related studies. 

Research Objectives 

The present work has three main purposes. 

1. 

2. Develop simple analytic solutions for beam vibrations for 

They are 

Support the research underway at the Aerostructures Directorate; 

comparison with tests and finite element simulations; and 

3. Develop, validate and complete a simple analysis approach for 

multicell beams. 

Item 1 has lead to Accomplishments 5-9 and 13. ' Item 3 corresponds to 

Accomplishment 11. Work supporting item 2 was presented in an informal 

report to the Langley Research Center. 

Single Cell Theory 

The theory of Rehfieldl was compared with a finite element simulation . 

of the static response of a model rotor blade2. While. the results showed 

generally good agreement, the effect of torsion-related warping was not 

accounted for. Later a complete analysis was performed5 which provided 

excel 1 ent agreement. A1 so, a physical assessment of the various el asti c 

coup1 i ngs has been made. 



A summary of the above results appears in Appendix I, which is the 

abstract corresponding to Accompl ishment 13. A1 so, a description o f  the 

improvements in twisting kinematics over the original theory1 is provided. 

Mu1 ti cell Theory 

Mu1 ti cell theory requires a new model ing approach. The essenti a1 

difference between single cell and multicell thin-walled beams is in the 

analysis of torsion. The innovative approach that has been usedll i s  

described in Appendix 11. This appendix is the abstract for a new paper 

that has been submitted for presentation at the 29th AIAA SDM Conference. 
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APPENDIX I 

SINGLE CELL THEORY 



A STRUCTURAL MODEL FOR COMPOSITE 

ROTOR BLADES AND LIFTING SURFACES* 

Lawrence W .  Rehfield and Ali R. Atilgan** 
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School of Aerospace Engineering 
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EXTENDED ABSTRACT 

Introduction 

Composi te material systems are currently primary candidates 

for aerospace structures. One key reason for this is the design 

flexibility that they offer. It is possible to tailor the material 

and manufacturing approach to the application. Two notable 

examples are the wing of the Grumman/USAF/DARPA X-29 and rotor 

blades under development by the U.S.A.  Aerostructures Directorate 

(AVSCOM), Langley Research Center. 4 

1 

A working definition of elastic or -structural tailoring is the 

use of sgructural concept, fiber orientation, ply stacking sequence 

and a blend of materials to achieve specific performance goals. In 

' the design process, choices of materials and dimensions are made 

which produce specific response characteristi cs' which permit the 

selected goals to be achieved. Common choices for tailoring goals 

are preventing instabilities or vibration resonances or enhancing 

damage to1 erance. 

* Sponsored by ARO under Contract DAAS29-82-K-0097 and by USA 
Aerostructures Directorate under grant NAG1-638. 

** Professor, Associate Fellow AIAA and NATO Scholar, respectively. 



An essent ia l ,  enabling factor in the design of ta i lored  

composite structures i s  structural modeling that  accurately, b u t  

simply, characterizes response. Simp1 i c i t y  i s  needed as  

cause-effect relationships between configuration and response m u s t  

be c lear ly  understood and numerous design i te ra t ions  are  required. 

The objective of t h i s  paper is t o  improve the single closed-cell 

beam model previously developed by the senior author2 fo r  composite 

r o t o r  blades or l i f t i n g  surfaces and t o  demonstrate its usefulness 

i n  applications. 

Modeling Improvements 

Two major improvements have been made in the model of 

Reference 2. They are: 

(1) More accurate representation of twisting deformation; and 

(2 )  Simplification o f  the representation of torsion-related 

warping . 
Outline of the Present Work 

An analysis of the behavior of the model Langley rotor blade 

under three s t a t i c  load cases appears i n  RGference 1. The model 

r o t o r  cross section is shown in Figure 1. The same three loading 

cases hate been considered. The f i r s t  case is bending due t o  l i f t  

and blade weight, the second i s  pure torque and the th i rd  is  axial 

loading due t o  centrifugal force. 

In Reference 1, a classical version of the theory of Reference 

2 i s  compared w i t h  an extensive f i n i t e  element simulation based 
- 

upon orthotropic shell elements. Attention is focused upon the 

small discrepancies in the ear l ier  study which are  correctly 

- 2 -  



attributed to torsi on-re1 ated warpi ng. This conf i rms the findings 

reported in Reference 3. Also, an assessment of nonclassical 

effects in bending behavior has been made. 

Bending Due to Lift and Blade Weight 

Beam deflection results from the bending case appear i n  Figure 

2. Bernoul i -Eul er , the cl assi cal engineering beam theory, results 

are denoted by "BE." This model is overly stiff. Also presented 

are three shear deformation models, SD1, SD2 and SD3, and the 

f i ni te el ement resul ts. 

The shear deformation model S1 i s  an approximation obtained by 

setting the coupling stiffness C25 and C36 in Reference 2 to zero. 

This i s  the classical shear deformation model in the spirit of 

Timoshenko. Clearly it is overly stiff also. This direct 

transverse shear effect is small for a beam of this slenderness. 

The complete theory, which includes all coupling effects, is 

denoted SD3. It provides good agreement with the finite element 

results. 
# 

The approximation denoted SD2 is obtained by neglecting 

completely the classical shear deformation effect accounted for in 

SD1 in Pavor of the coupling mechanism associated with CZ5 and 

c36. This model, therefore, includes only deformations due to the 

transverse shear-bending coupling and the usual bending 

contribution. . The magnitude of this new, unexplored form of 

-- 

elastic coupling is seen to be enormous by comparing SD2 and BE 

results. This is a finding of major importance in understanding 

the behavior. 

- 3 -  



The SD2 or SD3 models are required in this application in 

order to get sufficiently accurate predictions. This clearly 
4 excludes the earlier classical type theory of Mansfield and Sobey 

from practical use. 

Pure Torque 

The cl assi cal St. Venant torsi on theory resul t (without 

warping) is compared to the complete beam theory (CBT) and the 

finite element results in Figure 3.  The CBT results, which differ 

from the classical (CL) only by the warping effect, are in 

excel 1 ent agreement with the finite el ement analysis. Restrained 

warping creates a boundary layer zone near the blade root that acts 

to stiffen the blade and reduce the angle of twist. 

Axial Loading Due to Centrifugal Force 

This case is of the utmost importance because extension-twist 

coup1 ing is to be used to control blade stall, an application of 

el asti c tai 1 ori ng. The discrepancy between analyti cal predictions 

and the finite element analysis was the gyeatest for this case. 

ClassicaJ theory was too soft and it overestimated the twist angle, 

a conditjon that is not conservative in view of the stated purpose 

of the model demonstration. 

As in the pure torsion case, the neglect of torsion-related 

warping is the reason for the discrepancy between coupled beam 

theory and the finite element analysis. 

The twist angle distribution appears in Figure 4. The use of 

.: , 

CBT brings the beam theory results in very good agreement with the 

finite element analysis. The rate of twist distribution is given 

in Figure 5. Again, the agreement is very good. 

- 4 -  



Concl usions 

In s t ructures  designed f o r  extension-twist coupling, a high 

degree of bending-shear coup1 ing i s  present which drast ical  ly  

causes the s t ructure  t o  be more f l ex ib l e  in bending. The impact o f  

t h i s  e f fec t  on system performance m u s t  be assessed. 

Torsion-related warping is s igni f icant  enough t o  warrant i t s  

inclusion in the beam analysis. With warping accounted for, the 

coupled beam theory i s  extremely accurate and easy t o  use. 
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APPENDIX I1 

MULTICELL THEORY 



STRUCTURAL MODELING FOR 
MULTICELL COMPOSITE ROTOR BLADES 
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Lawrence W .  Rehfield and Ali R. Atilgan 
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EXTENDED ABSTRACT 

Introduction 

Composite material systems are currently primary candidates for 

aerospace structures. One key reason for this is the design - 

flexibility that they offer. It is possible to tailor the material 

and manufacturing approach to the appl ication. Two notable examples 

are the wing of the Grumman/USAF/DARPA X-29 and rotor blades under 

development by the U.S .A. Aerostructures Directorate (AVSCOM) , Langley 

Research Center. 1 

A working definition of elastic or structural tailoring is the 

use of structural concept, fiber orientation, ply stacking sequence 

and a blend of materials to achieve specific performance goals. In 

the design proiess, choices of materials and dimensions are made which 

produce specific response characteristics which permit the selected 

goals to be achieved. Common choices for - tailoring goals are 

preventing instabilities or vibration resonances or enhancing damage 

to1 erance. 
-. 

* Sponsored by ARO under Contract DAAS29-82-K-0097 and by USA - 
Aerostructures Directorate under grant NAG1-638. 

** Professor, Associate Fellow AIAA and NATO Scholar, respectively. 



An essential, enabling factor in the design of tailored composite 

structures is structural model ing that accurately, but simply, 

characterizes response. Simplicity is needed as cause-effect 

relationships between configuration and response must be clearly 

understood and numerous design iterations are required. The objective 

of this paper is to present a new multicell beam model for composite 

rotor blades and to validate predictions based upon the new model by 

comparison with a finite element simulation in three benchmark static 

load cases. 

Outline of the Present Work 

The most significant difference between single cell and multicell 

thin-walled beams is in the analysis of torsion. The first step is 

to determine the shear center of the multicell section which i s  needed 

to establish the twisting kinematics. In the present approach, an 

innovative application of the unit load theorem is employed which 

utilizes the St. Venant torsion solution as a basis. This approach 

leads to closed form expressions for the coordinates of the shear 

center that ace in terms of physically meaningful parameters. 

Torsion-related warping, which earlier on single cell 

theory indicate is important, is determined in a manner similar to 

that of B e n s c ~ t e r . ~  In contrast to obtaining the stiffness matrix 

using the principle of virtual work2, the unit load theorem is 

employed also to find the flexibility matrix, which is inverse o f -  the 

stiffness matrix. Therefore, flexibil ities are directly found, which 

is convenient for application. 
- 



After the above analytical s t e p s  are  completed, the global beam 

theory is created i n  a manner similar t o  the single cel l  case.2 

Appl i cat i  on 

The present model i s  applied t o  a two cel l  beam. The model cross 

section is shown i n  Figure 2. The benchmark s t a t i c  load cases appear 

i n  Figure 3. The f i r s t  case is bending due t o  a t i p  load, the second 

is pure torque and the th i rd  i s  axial loading due t o  a centrifugal 

force. 

The predictions a re  compared w i t h  an extensive f i n i t e  element 

simulation6 based upon orthotropic shell elements. They are found t o  

be i n  very good agreement as can be seen i n  Figures 4,  5 and 6. 

Concluding Remarks 

A mu1 t i  cel l  beam theory is  devel oped and Val idated. Predictions 

based upon the new model are compared w i t h  an extensive f i n i t e  element 

simulation as the means of validation. 
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